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Abstract

A method to identify moving forces on a continuous bridge has been developed in this paper. The bridge is modelled as a

Bernoulli–Euler beam and the boundary value problem of the beam is solved to get the exact mode shape functions of the

vibrating beam with intermediate supports. As the number of spans of the bridge increases, the identification accuracy

decreases and at the same time more execution time is needed to finish one case study. To minimize this problem, a method

has been developed to identify moving forces on a selected span of interest from the continuous bridge. The Singular Value

Decomposition (SVD) of the coefficient matrix of the overdetermined equation is used in the solution. To evaluate the

method, simulations of two moving forces on a continuous bridge and on one selected span from the continuous bridge are

studied. White noise is added to the simulated bending moment and acceleration responses to study the effect of noise in

moving forces identification problem for different numbers and arrangements of sensors. The results obtained from the

simulation study show that the method is effective in identifying moving forces and acceptable results can be obtained.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Information on truck axles and gross weights is an important factor in both bridge and pavement designs.
Traditional methods used to acquire such information are expensive and subject to bias and have led to the
development of Weight-in-Motion (WIM) techniques. Several methods of WIM systems have been developed
(Davis and Sommerville [1], Peters, AXWAY [2] and CULWAY [3]), but these systems can only measure the
static axle loads. However, dynamic axle loads are also important as they may increase road surface damage
by a factor of 2–4 over that caused by static loads, Cebon [4]. Therefore, it is important to have a better
understanding of the time histories of the axle loads rather than a single equivalent load per axle.

Four advanced methods of moving force identification on bridges have been developed and validated by the
authors. Interpretive Method I by Chan and O’Conner [5], Interpretive Method II by Chan et al. [6], Time
Domain Method (TMD) by Law and Chan [7], and Frequency Time Domain Method by Law and Chan [8].
Each of the four methods has been proved successful in identifying not only static equivalent axle forces but
also their time variations.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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The system can be used not only to acquire the field data to develop dynamic load expressions for bridge
design but also to use the data for further study on the understanding of bridge–vehicle interaction and
identifying the characteristics of vehicles which will cause least damage to a bridge and the pavement. A
comparison study of the accuracy of the force identification using the four methods is carried out and it is
found that the TDM gives the best results [9,10]. However, the methods can only be applied to simply
supported bridges. In order to have a broader application it is necessary to extend the moving force
identification system for continuous bridges.

In recent years, many researchers have studied the time history of the dynamic responses of the continuous
beams due to moving vehicle wheel loads. Zhang et al. [11] used the assumed mode shape function to study the
vibration behaviour of a non-uniform Bernoulli–Euler beam whilst Henchi et al. [12], used the finite element
approach to obtain the exact mode shapes and frequencies. In addition, Dugush and Eisenberger [13] used the
exact element method to determine the natural frequencies and mode shapes, and the solution is obtained by
application of modal analysis and the direct integration method.

All the above methods are mainly concentrated on the forward problem, i.e. determination of the dynamic
responses due to moving vehicle loads. However, in the present study the model is developed to analyse bridge
dynamic responses and also the inverse problem of force identification from the dynamic responses of the
continuous bridge is studied. The bridge is modelled as a Bernoulli–Euler beam continuously supported over
the inner supports and simply supported at the outer supports. The boundary value problem of the beam is
solved to get the exact mode shape functions of the vibrating beam. Attention is given to the development of
TDM in applying for continuous supported bridges to identify moving forces from bending moment and
acceleration responses of bridge. The TDM approach is used to study the time history of the structural
responses caused by time-varying moving forces, which is the forward problem. In order to identify the time
history of moving forces, the inverse problem has been studied. The new approach of identifying the time
history of the interactive forces between the axles and bridge for one selected span at a time is introduced while
the vehicle is moving across the whole bridge. The simulations of two time-varying forces moving over the
bridge are used to evaluate the method. The simulation results show that the method is effective in identifying
moving forces.

2. Theoretical model

As shown in Fig. 1, the bridge superstructure is modelled as a continuous beam with a total span length L,
constant flexural stiffness EI, constant mass per unit length r and viscous proportional damping C. The beam
is assumed to be an Bernoulli–Euler beam, in which the effects of shear deformation and rotary inertia are not
taken into account.
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Fig. 1. Group of moving forces over the continuous beam.
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Considering the group of forces Pk(t) moving from left to right at a constant speed, the equation of motion
can be expressed as

r
q2vðx; tÞ

qt2
þ C

qvðx; tÞ

qt
þ EI

q4vðx; tÞ
qx4

¼ f ðx; tÞ. (1)

Based on modal superposition, the solution of Eq. (1) can then be expressed as

vðx; tÞ ¼
X1

n

FnðxÞqnðtÞ, (2)

where qn(t) is the nth modal amplitude and Fn (x) is the nth mode shape function of the beam. Substituting
Eq. (2) into (1) and multiplying by Fn, integrating the resultant equation with respect to x between 0 and L and
then applying orthogonality conditions, the equation of motion in terms of the modal displacement qn(t) is given as

d2qnðtÞ

dt2
þ 2xnon

dqnðtÞ

dt
þ o2

nqnðtÞ ¼
1

Mn

XNl

k¼1

FnðxkðtÞÞf ðx; tÞ ðn ¼ 1; 2; . . . ;1Þ, (3)

where on, xn and Mn are modal frequency, damping ratio and modal mass of the nth mode, respectively, and

Mn ¼

Z L

0

rAF2
nðxÞdx (4)

for group of moving forces, f(x, t) in Eq. (3) is given by Cebon [14]

f ðx; tÞ ¼ �
XNl

k¼1

dðx� xkðtÞÞpkðtÞ, (5)

where xk (t) is the position of the kth force, and d(t) the Dirac delta function.

3. Free vibration of the continuous beam

The modal shape function which is one of the components in Eqs. (2)–(4) should be determined beforehand
in the process leading to the solutions. Substituting the modal expansion of Eq. (2) into (1) and ignoring the
small damping term in Eq. (1), and then by separation of variables, the equation of the motion transforms to
the fourth-order ordinary differential equation

d4Fn

dx4
ðxÞ � l4nFnðxÞ ¼ 0. (6)

For the rth span of the general case of a continuous beam as shown in Fig. 2, the solution of Eq. (6) is given by

FnrðxrÞ ¼ Anr sinðlnrxrÞ þ Bnr cosðlnrxrÞ þ Cnr sinhðlnrxrÞ þDnr coshðlnrxrÞ, (7)

where Fnr(xr) is the nth modal shape function of the rth span and xr is the distance from the first support of the
span under consideration.
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�r , EIr
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Fig. 2. General case of continuous beam.
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In addition, lnr in Eq. (7) is the nth eigenvalue of the span r to be obtained from

lnr ¼

ffiffiffiffiffiffiffiffiffiffi
rro2

n

EIr

4

s
, (8)

where rr and EIr are mass per unit length and stiffness of the rth span respectively and on is the nth natural
frequency of the beam.

The total nth mode shape of the whole beam is given by

FnðxÞ ¼ FnrðxrÞ; where QrpxpQrþ1. (9)

The arbitrary constants Anr, Bnr, Cnr and Dnr in Eq. (7) are determined from the boundary and initial
conditions. The calculation of eigenfunctions is just a matter of substituting the appropriate boundary
conditions in Eq. (7).

Eq. (7) applies to spans with arbitrary boundary conditions at the outer and inner supports. In this paper it
is assumed that the outer two end support conditions are simply supported and the beam is continuous over
the inner supports.

The boundary conditions for this case require that the displacement Fnr(x) vanishes at the outer and inner
supports as follows:

Fnrð0Þ ¼ 0; FnrðlrÞ ¼ 0; Fnrðrþ1Þð0Þ ¼ 0. (10)

Eq. (10) gives the boundary conditions of geometric nature and hence represents geometric or essential
boundary conditions.

From continuity of the beam over the inner supports, the natural or force boundary condition requires:

dFnrðxÞ

dx
jx¼lr
¼

dFnðrþ1ÞðxÞ

dx
jx¼0,

EIr

d2FnrðxÞ

d2x
jx¼lr
¼ EIrþ1

d2Fnðrþ1ÞðxÞ

d2x
jx¼0, ð11Þ

which states that, the slopes and bending moments of two adjacent spans at the common support must be
equal.

By substituting the boundary conditions of Eqs. (10) and (11) into (7), the constants Anr, Bnr, Cnr and Dnr

can be obtained from the following expressions which are straight forward and easy for computer
programming:

For the first span:

An;1 ¼ 1; Bn;1 ¼ 0; Cn;1 ¼ � sin ln1L1= sinh ln1L1; Dn;1 ¼ 0.

For the inner spans:

Bn;rþ1 ¼ �
ðln;rÞ

2

ðln;rþ1Þ
2
� ðIr=Irþ1Þ

� ð�An;r sin ln;rLr � Bn;r cos ln;rLr þ Cn;r sinh ln;rLr þDn;r cosh ln;rLrÞ=2,

Dn;rþ1 ¼ �Bn;rþ1,

An;rþ1 ¼ �Bn;rþ1ðcos ln;rþ1Lrþ1 � cosh ln;rþ1Lrþ1Þ �
ln;r

ln;rþ1

� ðAn;r cos ln;rLr � Bn;r sin ln;rLr þ Cn;r cosh ln;rLr þDn;r sinh ln;rLrÞ

�
sinh ln;rþ1Lrþ1

sin ln;rþ1Lrþ1 � sinh ln;rþ1Lrþ1
,

Cn;rþ1 ¼
ln;r

ln;rþ1
� ðAn;r cos ln;rLr � Bn;r sin ln;rLr

þ Cn;r cosh ln;rLr þDn;r sinh ln;rLrÞ � An;rþ1.



ARTICLE IN PRESS
T.H.T. Chan, D.B. Ashebo / Journal of Sound and Vibration 295 (2006) 870–883874
For the last span:

Bn;rþ1 ¼ �
ðln;rÞ

2

ðln;rþ1Þ
2
� ðIr=Irþ1Þ

� ð�An;r sin ln;rLr � Bn;r cos ln;rLr þ Cn;r sinh ln;rLr þDn;r cosh ln;rLrÞ=2,

Dn;rþ1 ¼ �Bn;rþ1,

Cn;rþ1 ¼ Bn;rþ1ðcosh ln;rþ1Lrþ1= sinh ln;rþ1Lrþ1Þ,

An;rþ1 ¼
ln;r

ln;rþ1
� ðAn;r cos ln;rLr � Bn;r sin ln;rLr

þ Cn;r cosh ln;rLr þDn;r sinh ln;rLrÞ � Cn;rþ1, ð12Þ

where n ¼ 1; 2; . . ., total number of mode, r ¼ 1; 2; . . . ; total number of span, Ir is the second moment of area
of the span r, Lr is length of span r.

4. Moving load identification

The response of the system expressed by Eq. (3) can be solved in the time domain by the convolution
integral

qnðtÞ ¼
1

Mn

Z t

0

hnðt� tÞpðtÞdt, (13)

where hn(t�t) is the impulse response function and it is given by

hnðtÞ ¼ ð1=o0nÞe
�xnonDtði�jÞ sinðo0ntÞ; tX0 and o0n ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2n

q
. (14)

After substituting Eqs. (13) and (14) into (2) for the generalized coordinate qn(t), then the dynamic
deflection of the beam at point x and time t can be found, as

vðx; tÞ ¼
X1

n

FnðxÞ

Mn

Z t

0

ð1=o0nÞe
�xionðt�tÞ sin o0nðt� tÞ

XNt

k¼1

pkðtÞFnðxkðtÞÞdt. (15)

4.1. Identification from bending moment

Once if the solution for the deflection is determined using Eq. (15), then the solution for bending moment is
simply obtained by applying the relationship of deflection and bending moment from theory of mechanics.
Hence, the dynamic bending moment of the beam at point x and time t is given by

mðx; tÞ ¼ �EI
q2vðx; tÞ

qx2
. (16)

Substituting Eq. (15) into (16) and assuming that the force pk(t) is a step function in a small time interval,
Eq. (16) can be written in discrete terms as

mðiÞ ¼ EI
X1

n

F00nðxÞ
Mn

Xi

j¼0

ð1=o0nÞe
�xnonDtði�jÞ sin o0nDtði � jÞ

XNt

k¼1

pkðtÞFnðxkðtÞÞ

i ¼ 0; 1; 2; . . . ;N, ð17Þ

where, Dt is the sampling interval and N+1 is the number of sample points.
It can be seen that the right-hand side of Eq. (17) consists of two parts, namely, (1) the system associated

with the bridge deck and the force, and (2) axle force due to the moving vehicle. Therefore, Eq. (17) can be
arranged in matrix form based on the components as follows:

b
ðN�1Þ�1

¼ A
ðN�1Þ�ðNB�1Þ

x
ðNBþ1Þ�1

, (18)
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where, NB ¼ l=cDt and b is the time series vector of the bending moment response, x is the time series vector of
the time-varying force p(t) to be identified and A is the coefficient matrix which is associated with the system of
the bridge deck and the force.

4.2. Identification from acceleration

It is shown above that the time-varying force could be identified if the bending moment responses are
acquired. Most often the bending moment responses are measured using strain gauges indirectly. The
installation of the strain gauges requires substantial work load and time; hence, acceleration measurements are
more convenient and easier to conduct than strain gauges. It is, therefore, worthwhile exploring the possibility
of force identification from acceleration responses on the continuous bridge.

Again using the same principle as in Section 4.1 the acceleration of the system can be derived from
deflection. Hence, the acceleration at point x and time t can be obtained from

aðx; tÞ ¼
q2vðx; tÞ

qt2
(19)

after substituting Eq. (15) into (19). Then we arrive at

aðx; tÞ ¼
q2vðx; tÞ

qt2
¼
X1

n

1

Mn

FnðxÞ pnðtÞ þ

Z t

0

€hnðt� tÞpnðtÞdt
� �

. (20)

Eq. (20) can be written in discrete terms as

aðiÞ ¼
1

Mn

X1
n¼1

FnðxÞ FnðcDtiÞpðiÞ þ
Xi

j¼0

€hði � jÞFnðcDtjÞpðjÞ

" #
. (21)

Eq. (21) can also be expressed in matrix form similar to Eq. (18). In this case b stands for the time series
vector of the acceleration response, where as the same expressions apply for x and A as stated in Eq. (18).

Whilst using acceleration responses in the force identification process, the static loads cannot be identified.
However, for the comparison of the results with those obtained from bending moment responses the static
component of the load is added to the identified dynamic load. It is known that obtaining the acceleration
responses could be easier than the bending moment responses as the installation of accelerometers is simpler
than that for strain gauges. It is therefore suggested to explore the use of the acceleration responses together
with the bending moment responses so that the static component of the load could be determined by the
bending moment responses. The number of required strain gauges could then be reduced.

4.3. Identification using responses of the target span

The main purpose of moving force identification is to determine the dynamic axle load history of a moving
vehicle so that a better understanding of bridge–vehicle interaction could be obtained. It is not essential to
obtain the time history of the axle force for all the spans. Most often, only a typical or a critical span is of
interest. For a continuous supported bridge consisting of many spans, is it necessary to instrument all the
spans in order to identify the moving forces on a particular span of the bridge? It will be much more efficient
and economical if a method is developed to identify the moving forces on a particular span while only this
span (the target span) is used.

The bridge response Eqs. (15), (17) and (21) are developed on the basis of considering all the spans of the
beam. This means that in order to get the responses due to the external loads, the moving loads should travel
from the first entry point of the bridge to the exit point of the bridge. In this approach the efficiency of the
method in identifying moving forces becomes worse and more noise sensitive as the number of spans increases.
This is because of the fact that the moving force identification is an inverse problem, and the solution of the
system mainly depends up on the condition of matrix (in this case matrix A) that to be inverted. And the
condition of matrix A mainly depends on the parameters, which generated it. One of these parameters from
which matrix A is generated is modal shape functions. No matter how many mode shapes to be considered,
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from the boundary conditions given in Eq. (10) it is understood that the value of modal shape functions
approaches to zero at the neighbourhood of the supports and turns to be zero at the supports. This will then
affect the values of the coefficient matrix A by introducing zero entries periodically in the corresponding
elements based on the number of the supports, i.e. as the number of the support increases the number of zero
entries will be increased and vice versa is also true. As mentioned earlier, in order to obtain the solution,
matrix A should be inverted, and the zero elements in it will bring its ill conditioning which will then become
very sensitive for noise. It is a problem that engineers and researchers have to face when carrying out practical
measurements in laboratories and in field tests.

In addition, as the number of the span increases, the number of elements in matrix A will also be increased,
Therefore, longer computation time is required to obtain the solution because of the longer time needed to
invert the big matrix A in Eq. (18), which is one of the main drawbacks of the TMD [9,10]. To avoid all the
mentioned limitations of moving force identification on continuous bridges, the new approach is developed
and introduced using the responses from one span (target span) only to identify the time history of the moving
vehicle loads on that span while the vehicle is moving across the whole beam rather than considering all the
spans in the analysis of the responses. Since Eq. (7) is derived directly to get the mode shapes of each span, the
response Eqs. (15), (17) and (21) can be written as follows to calculate the responses of the specified span,

vðx; tÞ ¼
X1

n

FnrðxrÞ

Mn

Z t

0

ð1=o0nÞe
�xionðt�tÞ sin o0nðt� tÞpðtÞFnrðxkðtÞÞdt, (22)

mðiÞ ¼ EI
X1

n

F00nrðxrÞ

Mn

Xi

j¼0

ð1=o0nÞe
�xnonDtði�jÞ sin o0nDtði � jÞpðtÞFnrðxkðtÞÞ, (23)

aðiÞ ¼
1

Mn

X1
n¼1

FnrðxÞ FnrðcDtiÞpðiÞ þ
Xi

j¼0

€hði � jÞFnrðcDtjÞpðjÞ

" #
, (24)

where Fnr is the nth modal shape function of the given span r. The responses of the target span under
consideration are recorded in a time gap between the first axle of the vehicle load entering the span and the last
axle of the vehicle leaving the span. In the moving force identification from the target span only one span is
considered so that the number of zero elements in a matrix A is minimized due to reducing zero values of mode
shape functions at the support. In addition to increasing the efficiency of the method, this approach also
improves the identification accuracy.

The selection of target span for moving force identification from continuous beam is depending up on the
user of this method. It means that the method can be applied on any span weather it is the first or last span of
the continuous supported bridge of interest. The selection of the target span may be based on the span which is
more interesting to study, e.g. showing unusual bridge responses, or it could be based on the installations
conditions of sensors, e.g. the under structure condition of one span may be better than others.

4.4. Solution

If N ¼ NB, matrix A becomes a lower triangular matrix and the force vector can be obtained directly by
solving Eq. (18). If N4NB, and/or Nl bending moments or acceleration responses (Nl41) are measured, the
least-squares method can be used to find the time history of the moving forces p(t), by directly calculating the
pseudo-inverse (PI) of A, Aþ ¼ ðATAÞ�1AT.

The least-square solution of Eq. (18) is given by Yu and Chan [15] and written as follows:

x ¼ Aþb ¼ ½ðATAÞ�1AT�b. (25)

If A is close to rank deficient then the method of singular value decomposition (SVD) can be applied as
successfully used by Yu and Chan [15]. If A is real, the SVD of A is USVT, where, U is an orthogonal k� k

matrix, V is an orthogonal n� n matrix and S is a real diagonal k� n matrix in which the elements at
the leading diagonal of the matrix are called the singular values of A. The least-squares solution vector x is
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then given by

x ¼ ðVS�1UTÞb. (26)

5. Numerical examples and simulation

5.1. Identification of moving forces from continuous beam

In order to check the correctness of the above-mentioned method, two time-varying moving forces are
simulated as follows.

p1ðtÞ ¼ 58:8½1þ 1:0 sinð10ptÞ þ 0:05ð40ptÞ� kN;

p2ðtÞ ¼ 137:2½1� 1:0 sinð10ptÞ þ 0:05ð50ptÞ� kN,

ls ¼ 8m ðaxle spacingÞ. ð27Þ

The two forces simulate a vehicle with a static gross weight of 200 kN, similar to the one used in Chan et al.
[9], with the first and second static forces being 58.8 and 137.2 kN, respectively, and having an 8m axle
spacing. The vehicle is moving with a constant velocity of 30m/s over the bridge.

The bridge is modelled as a three span continuous beam over two internal supports, and simply supported
over the two outer supports. The parameters of the beam are EI ¼ 1.279140� 1011Nm2 and
r ¼ 1:2� 104 kg=m. The total length of the beam is 60m and the length of each of the three spans is 20m.
Damping has been taken to be z ¼ 0:02 for all modes. The first five vibration modes are included in the
calculation and the corresponding natural frequencies were obtained by the method presented in Ref. [16]. As
indicated by Proakis and Manolakis [17] the sampling frequency should be at least two times the highest
frequency contained in the signal, which is called Nyquist rate. For this particular case the highest frequency
occurred at the fifth natural mode, and from calculation the frequency of the fifth mode was obtained to be
58.45Hz, and hence the Nyquist rate is two times this value and found to be 116.9Hz. Any value equal or
above this value can be taken as the sampling frequency. In addition the upper limit of the sampling frequency
depends upon the computation capacity of the computer used since higher values of sampling frequency need
longer computation time. Therefore, the optimum value of 200Hz is selected as sampling frequency and 512
measuring points are included in the calculation. After obtaining the simulated forces, the simulated bending
moment and acceleration responses at different locations of the beam can be calculated using Eqs. (17) and
(21), respectively, which are forward problems. White noise is added to the calculated responses to simulate
the polluted measurements as follows:

m ¼ mcalculated þ Ep� jjmcalculatedjj �Nois,

a ¼ acalculated þ Ep� jjacalculatedjj �Nois, ð28Þ

where, Ep is the specified error level, Nois is a standard normal distribution vector (with zero mean value and
unit standard deviation), m and a stand for the bending moment and acceleration responses, respectively. For
inverse problems during the simulation, the simulated bending moments and accelerations are taken as
measured responses of the beam and using these simulated bending moment responses the forces can be
identified. To study the inverse problem, the solution method of SVD of the coefficient matrix in the over
determined system of equation is used in identifying moving forces. Case studies are carried out on both a
continuous beam (considering all spans) and on one selected span of the beam. The middle span is selected as a
target span to show the effectiveness of the method in identifying moving forces by considering only one span
from the continuous beam model.

To evaluate the method and the identification accuracy, the relative percentage error (RPE) between
the true and identified forces are calculated for a different number of sensors with different arrangements
as follows:

Error ¼

P
jf true � f identifiedjP

jf truej
� 100%. (29)
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In Eq. (29), the true force is directly obtained from the simulated time-varying moving forces in Eq. (27) and
the identified force is obtained from by solving inverse problem as stated in Eq. (26) from the corresponding
simulated bending moment or acceleration responses.

Tables 1 and 2 show the RPE results between the true and identified forces under different noise levels from
the simulated bending moment and acceleration responses, respectively. Note that for the purpose of
comparison of the identified forces obtained from the simulated acceleration responses with that of the
bending moment responses the static component of the load is added to the dynamic load obtained from
acceleration responses as mentioned in Section 4.2. The comparisons of identified forces for three sensors with
5% noise level in simulated responses are shown in Figs. 3 and 4. From analysis of the above-mentioned tables
and figures, the following are noted:
(a)
ble

PE v

o. of

nsor

ble

PE v

o. of

nsor
If Ep ¼ 0, i.e. no noise is added to the simulated bending moment and acceleration responses, the
identified forces are very close to the true forces. This indicates that the identification method and
algorithms are correct.
(b)
 The errors between the identified and true forces increase with the increase of noise level; this shows that
the method is noise sensitive. Identified results from acceleration responses are more affected by noise than
those obtained from bending moment responses.
(c)
 As the noise level increases, the RPE values are mostly affected by locations of sensors when bending
moment responses are used. For example, as shown in Table 1, when five numbers of sensors are used by
locating them at different positions on the beam, different results are obtained. A dramatic increase of
RPE is noticed when the five sensors are distributed in all of the three spans. On the other hand, the results
from acceleration responses are least affected by location of sensors. From Figs. 3 and 4 for both identified
results from bending moment and acceleration responses it is noticed that the big ripples occurred at
neighbourhood of the supports indicating the matrix A is very ill conditioned at those regions. This is in
good agreement with discussion presented in Section 4.3. It was mentioned in Section 4.3 that the values of
1

alues in two forces identification (%) from simulated bending moment responses

s

Location of sensors from the left

support of the beam in meters

0% Ep 1% Ep 5% Ep

Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2

25 30 35 0.018 0.008 4.869 2.327 24.340 11.630

24 28 32 36 0.018 0.007 3.513 1.745 17.564 8.725

24 27 30 33 36 0.016 0.006 3.537 1.721 17.689 8.606

22.5 25 30 35 37.5 0.016 0.006 3.135 1.538 15.676 7.692

10 25 30 35 50 0.014 0.006 18.240 4.910 91.230 24.550

10 15 25 30 35 45 50 0.014 0.006 10.107 2.537 50.530 12.680

2

alues in two forces identification (%) from simulated acceleration responses

s

Location of sensors from the left

support of the beam in meters

0% Ep 1% Ep 5% Ep

Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2

25 30 35 0.015 0.006 25.260 9.981 126.312 49.923

24 28 32 36 0.015 0.006 23.937 9.516 119.680 47.584

24 27 30 33 36 0.013 0.005 24.726 9.791 123.627 48.951

22.5 25 30 35 37.5 0.012 0.005 20.990 8.447 104.950 42.231

10 25 30 35 50 0.016 0.005 18.848 7.521 94.231 37.612

10 15 25 30 35 45 50 0.012 0.005 11.148 4.082 55.735 20.144



ARTICLE IN PRESS

-100

-50

0

50

100

150

200

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

F
or

ce
 (

K
N

)

TRUE

Second axle force

-100

-50

0

50

100

150

200

250

300

F
or

ce
 (

K
N

)

Time (sec)

Time (sec)

First axle force

IDEN

TRUE

IDEN

Fig. 3. Identified moving forces with 5% noise in the simulated bending moment responses.
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the modal shape functions near the supports are very close to zero, which will then affect the values of the
inverse of the of the coefficient matrix A in Eq. (18) around the supports. This will bring ill conditioning in
the coefficient matrix A.
5.2. Moving force identification using responses from middle span

The same simulated time-varying two moving forces in Section 5.1 are used. In this case only the response of
the middle span of the beam is considered to identify moving time-varying forces in the middle of the span.
The time history of the bridge response due to moving forces is obtained from the forward problem starting
from the instant at which the simulated first axle force crosses the first support of the span until the instant at
which the second axle force leaves the span. The results obtained from error study of force identification for
different sensors arrangement are given in Tables 3 and 4.

From the results presented in Tables 3 and 4 and Figs. 5 and 6 the following comments are given on the
identification of moving forces from middle span using simulated bending moment and acceleration responses.
(a)
 If Ep ¼ 0, i.e. no noise is added to the simulated bending moment and acceleration responses, the
identified forces are very close to true forces. This indicates that the identification method and algorithms
are correct.
(b)
 As the noise level increases, the identified results from acceleration responses are more affected than those
results obtained from bending moment responses.
(c)
 Results obtained from acceleration responses are least affected by different location and arrangement of
sensors. However, as seen from Table 3 results from bending moment responses are affected by different
locations of sensors for the same number of sensors. Higher RPE values are obtained in the last row of
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Table 4

RPE values in two forces identification (%) in middle span, from simulated acceleration responses

No. of

sensors

Location of sensors from the left

support of the beam in meters

0% Ep 1% Ep 5% Ep

Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2

3 25 30 35 0.012 0.005 8.230 3.121 41.151 15.630

4 24 28 32 36 0.011 0.004 8.069 3.012 40.342 15.080

5 24 27 30 33 36 0.015 0.005 8.147 3.095 40.711 15.493

5 22.5 25 30 35 37.5 0.011 0.005 7.781 2.913 39.921 13.572

Table 3

RPE values in two forces identification (%) in middle span, from simulated bending moment responses

No. of

sensors

Location of sensors from the left

support of the beam in meters

0% Ep 1% Ep 5% Ep

Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2

3 25 30 35 0.017 0.007 1.475 1.160 7.361 5.847

4 24 28 32 36 0.020 0.008 1.382 1.270 6.880 6.322

5 24 27 30 33 36 0.018 0.007 1.261 1.211 6.281 6.064

5 22.5 25 30 35 37.5 0.016 0.006 2.621 1.145 13.121 7.034
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Fig. 4. Identified moving forces with 5% noise in the simulated acceleration responses.
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Table 3 with 5% noise level. This is due the fact that the locations of the two outer sensors are closer to the
supports. The moments at which the front axle leaving the target span is the main reason for the big ripples
noticed in identified moving force in Figs. 5 and 6. In general, better identification accuracy can be
attained when only one span is used in the force identification process.
6. Conclusions

The results presented in this paper indicate that it is possible to identify moving forces from bending
moment and acceleration responses on a continuous beam. Good accuracy is attained when the moving
force identification is carried out in the absence of noise in simulated responses. The accuracy of identification
is lower at the moments when the second axle is entering the beam and the first axle is leaving from the
beam. The other locations at which the accuracy of identification is affected the most are locations around the
supports. The accuracy of the identified forces becomes lower with the increase of noise level in both the
simulated bending moment and acceleration responses, and it has been shown that results from acceleration
responses are most affected by noise. A new approach of identifying the interactive forces between the axles
and the bridge from the responses of only one span of a continuous bridge is developed while the vehicle is
moving across the whole beam, and better identification accuracy is obtained. In addition, when using this
method the computation time needed is much lower than considering all spans of the continuous bridge in the
force identification process.
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